Deep Eutectic Solvent Synthesis of LiMnPO4/C Nanorods as a Cathode Material for Lithium Ion Batteries

نویسندگان

  • Zhi Wu
  • Rong-Rong Huang
  • Hang Yu
  • Yong-Chun Xie
  • Xiao-Yan Lv
  • Jing Su
  • Yun-Fei Long
  • Yan-Xuan Wen
چکیده

Olivine-type LiMnPO₄/C nanorods were successfully synthesized in a chloride/ethylene glycol-based deep eutectic solvent (DES) at 130 °C for 4 h under atmospheric pressure. As-synthesized samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Raman spectroscopy, Fourier transform infrared spectroscopy (FTIR) and electrochemical tests. The prepared LiMnPO₄/C nanorods were coated with a thin carbon layer (approximately 3 nm thick) on the surface and had a length of 100-150 nm and a diameter of 40-55 nm. The prepared rod-like LiMnPO₄/C delivered a discharge capacity of 128 mAh·g-1 with a capacity retention ratio of approximately 93% after 100 cycles at 1 C. Even at 5 C, it still had a discharge capacity of 106 mAh·g-1, thus exhibiting good rate performance and cycle stability. These results demonstrate that the chloride/ethylene glycol-based deep eutectic solvents (DES) can act as a new crystal-face inhibitor to adjust the oriented growth and morphology of LiMnPO₄. Furthermore, deep eutectic solvents provide a new approach in which to control the size and morphology of the particles, which has a wide application in the synthesis of electrode materials with special morphology.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Electrochemical Characterization of Low-Cost Lithium-Iron Orthosilicate Samples as Cathode Materials of Lithium-Ion Battery

Lithium-iron-orthosilicate is one of the most promising cathode materials for Li-ion batteries due to its safety, environmental brightness and potentially low cost. In order to produce a low cost cathode material, Li2FeSiO4/C samples are synthesized via sol-gel (SG; one sample) and solid state (SS; two samples with different carbon content), starting from Fe (III) in the raw materials (lo...

متن کامل

Carbonate anions controlled morphological evolution of LiMnPO4 crystals.

LiMnPO4 with a morphology controlled by carbonate anions was prepared via a simple template-free hydrothermal reaction; the LiMnPO4 shows a promising electrochemical activity as cathode material for lithium ion batteries.

متن کامل

Electrode Materials for Lithium Ion Batteries: A Review

Electrochemical energy storage systems are categorized into different types, according to their mechanisms, including capacitors, supercapacitors, batteries and fuel cells. All battery systems include some main components: anode, cathode, an aqueous/non-aqueous electrolyte and a membrane that separates anode and cathode while being permeable to ions. Being one of the key parts of any new electr...

متن کامل

LiMnPO4 Olivine as a Cathode for Lithium Batteries

The olivine structured mixed lithium-transition metal phosphates LiMPO4 (M = Fe, Mn, Co) have attracted tremendous attention of many research teams worldwide as a promising cathode materials for lithium batteries. Among them, lithium manganese phosphate LiMnPO4 is the most promising considering its high theoretical capacity and operating voltage, low cost and environmental safety. Various techn...

متن کامل

Graphene wrapped ordered LiNi0.5Mn1.5O4 nanorods as promising cathode material for lithium-ion batteries

LiNi0.5Mn1.5O4 nanorods wrapped with graphene nanosheets have been prepared and investigated as high energy and high power cathode material for lithium-ion batteries. The structural characterization by X-ray diffraction, Raman spectroscopy, and Fourier transform infrared spectroscopy indicates the LiNi0.5Mn1.5O4 nanorods prepared from β-MnO2 nanowires have ordered spinel structure with P4332 sp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2017